
Modular Object-oriented Architectures
for Scalable Hybrid Powertrains

Object-oriented architectures are already being applied in various applications to

design subsystems in a modular way and to scale their functionalities and interactions

within the system. In the FVV research project no. 1428 “Modular Hybrid Powertrain”,

principles for object-oriented designs and their transfer to hybrid powertrain systems

and individual components were developed at TU Darmstadt. This makes it possible

to exchange components and configurations to create variants without increasing

the development effort.

WRIT TEN BY

Maximilian Stumpp,
M. Sc.

is Research Associate
at the Institute for Internal
Combustion Engines and

Powertrain Systems (vkm)
of TU Darmstadt

(Germany).

Alexander Kuznik,
M. Sc.

is Research Associate
at the Institute for Internal
Combustion Engines and-
Powertrain Systems (vkm)

of TU Darmstadt
(Germany).

Prof. Dr. Christian Beidl
is Head the Institute for

Internal Combustion
Engines and Powertrain

Systems (vkm) of
TU Darmstadt

(Germany).

© TUD

Functions Integration

RESEARCH  Functions Integration

54 www.springerprofessional.com/automotive

Functions Integration

1 FLEXIBLE ARCHITECTURES

Future vehicle platforms are expected to feature a wide variety of
different powertrain configurations - the trend is already expressed
today in vehicles with Mild Hybrid Electric Vehicles (Mild-HEVs),
Full-HEVs and Battery Electric Vehicles (BEVs). Modular platforms
are already widely used to reduce production costs and to simplify
supply chains. One and the same component is used in different
vehicle variants. This is preceded by a high development effort in
terms of the applications of each variant, which is based on the
complexity and high interdependencies of the subsystems. A
cruise control system calculates a drive or braking torque to main-
tain or achieve a desired speed based on the characteristics and
physics of the vehicle variant it is equipped with. If only one com-
ponent is changed for a different variant, the control system must
be adjusted with new parameters.

In information technology, development is based on the princi-
ples of Object-oriented Design (OOD), providing flexibility in the
replacement or extension of functionalities. The principles are not
limited to software but can be extended and applied to hardware
elements as well [1]. The interaction between a computer and a
printer can be mentioned as an example.

The goal of the FVV research project, which was carried out at
the Institute for Internal Combustion Engines and Powertrain Sys-

tems (vkm) of TU Darmstadt, is to achieve the same level of flex-
ibility with a variety of components in powertrain development,
FIGURE 1. This is accomplished through the introduction of
object-oriented architectures and the design of component inter-
actions using standardized interfaces. The verification of the devel-
oped architecture is performed simulation-based.

2 PRINCIPLES

The development of an OOD-based system architecture proceeds
as follows [2]:
	– abstraction and definition of objects
	– adherence to consistent encapsulation (decoupling of functions)
	– design of interfaces according to the development principle of
“design by contract”

	– creation of a scalable and at the same time robust solution.
The main difference between previous system architectures
and OOD is illustrated in FIGURE 2 by the communication of
a controller with an Electric Motor (EM). Traditional systems
are primarily designed as classical control loops, where the EM
is directly controlled by specific load request. To calculate the
load signal, all relevant information about the EM needs to be
stored in the controller, requiring a priori knowledge of the
boundary conditions.

An object-oriented system design, on the other hand, is based
on negotiating the boundary conditions, with all information
about the EM encapsulated in the newly defined object “EM”.
Consequently, the development of the controller can proceed
independently of the specifications of the EM being used. An
object is thus defined as a hardware or software component that
abstracts functionality and characteristics. Each object has attri-
butes (or parameters) and functions that are publicly accessible
for other objects. [3]

The design of the interaction between objects is a crucial factor
in achieving complete modularity. The fundamental form of com-
munication is realized through the so-called “design-by-contract”

1	 FLEXIBLE ARCHITECTURES

2	 PRINCIPLES

3	 OBJECT-ORIENTED DESIGN OF THE POWERTRAIN

4	 IMPLEMENTATION AND VERIFICATION

5	 CONCLUSION

FIGURE 1 Concept of transferring OOD principles to the development of hybrid drive systems (© TUD)

MTZ worldwide  10|2023    55

principle. This involves a negotiation between two objects with
requests and responses. FIGURE 3 illustrates the negotiation pro-
cess in three steps [3]:
	– placement of a service request
	– negotiation of boundary conditions
	– signment and execution of the contract.

For a torque request, this involves the exchange of the maximum
and minimum available torques. These boundary conditions apply
to the respective requested time and are therefore situation-
dependent and dynamic. The information and services that can
be requested in each case must be defined through a protocol
as a standardized interface. Such a protocol also includes, among
other things, the exact signal forms, units, and sampling rates.
This enables the independent development of the respective
subsystems or objects.

3 OBJECT-ORIENTED DESIGN OF THE POWERTRAIN

The abstraction of the system includes the analysis and study of
all components and functionalities. The objects of the OOD-based
architecture are formed in such a way that clear main functions

can be assigned in each case. In a hybrid powertrain, the EM has
the main function of providing torque, analogous to an Internal
Combustion Engine (ICE). The objects can now be specifically
defined with attributes such as full-load characteristic curves.
Upon closer examination of the system, certain functional depen-
dencies between individual objects can be identified. The EM
requires the battery as an electrical power source. Since the pro-
vision of torque by the EM in the considered system is always
accompanied by a power supply from the battery, both objects can
be assigned to a common object called “electric powertrain”. This
facilitates interaction with other objects, as communication can
be handled through a single object. Similarly, a common object
called “ICE powertrain” can be introduced, which combines the
internal combustion engine (ICE) with the gearbox and the clutch.

Another necessary abstraction that needs to be made is the
functional abstraction into hierarchical levels. The longitudinal
motion of the vehicle is described in different levels of abstraction.
The basic task of the powertrain includes the kinematic planning
of the vehicle in time and space. This fundamental function can
be carried out by objects, for instance the driver, cruise control,
and other Advanced Driver Assistance Systems (ADAS). To ensure

FIGURE 2 Classical versus object-oriented system design based on negotiation (© TUD)

FIGURE 3 Interaction of objects by means of negotiation based on design by contract (© TUD)

RESEARCH  Functions Integration

56 www.springerprofessional.com/automotive

a consistent decoupling from the functions of the actuator objects,
the objects at the kinematic level are only allowed to request an
acceleration instead of a torque. Actuator objects provide torque
and are thus responsible for physical execution of the kinematic
planning. This results in a dynamic level and a controller level for
translating acceleration requests into torque requests. For this
purpose, a new object “motion control” needs to be introduced,
which calculates a torque request based on the vehicle mass and
the desired acceleration.

FIGURE 4 shows the complete OOD-based architecture. Two
additional objects that must be introduced can be seen. Since
there are multiple objects in each level with the same main func-
tionality, so-called coordinators are required. They are also nec-
essary to completely decouple the levels from each other. Objects
in the kinematic and controller levels must not depend on the
existence of individual actuator objects. The object “motion
control” should only request the overall available maximum and
minimum torque. The object “actuator coordinator” is responsi-
ble for the implementation on the dynamic level. It is aware of
the existence of individual actuator objects and is responsible
for the prioritization and the distribution of the torque requests.
For implementing an energy-optimal torque distribution, the
object “actuator coordinator” can consult the recommendations
provided by the newly defined object “energy manager.” It is
important to note that the final decision regarding the torque
distribution lies with the object “actuator coordinator.” A coor-
dinator is also necessary at the kinematic level. The object
“acceleration request coordinator” is tasked with accepting, pri-
oritizing, and negotiating the acceleration requests with the
object “motion control.”

4 IMPLEMENTATION AND VERIFICATION

The OOD-based architecture is implemented and verified in a sim-
ulation environment. The objects are modeled in Matlab/Simulink,
FIGURE 5. Classical component models are abstracted into objects

and defined accordingly with attributes and methods. The driver,
the rest of the vehicle, the virtual environment, and the road are
modelled in IPG CarMaker. The verification of the developed
approach is done by scaling or replacing the corresponding actu-
ator objects, whereby three vehicle variants are configured.

The functionality of full modularity is demonstrated by introduc-
ing new technologies as new objects and the system response to
the boundary behavior of individual objects, such as the lower and
upper state of charge of the battery. Furthermore, the integration
of a new object is demonstrated using the example of the electri-
cally heated catalyst and how the interaction can be realized in
the overall system in an object-oriented manner.

Here, a selected application example is described: the interac-
tion of the objects after replacing the EM of a 48-V hybrid vehicle
with an overload-capable machine during an uphill drive at a con-
stant speed. FIGURE 6 shows that the torque requirement exceeds
the nominal power of the EM, which communicates the maximum
and minimum torques in overload operation to the object “actua-
tor coordinator”. After 6 s, the maximum duration of the overload
is reached, so the object “electric powertrain” reports lower torque
limit values. In response to the driver’s request and the changed
conditions, the object “actuator coordinator” decides, based on
the recommendation of the object “energy manager”, to start the
internal combustion engine. The OOD architecture enables the
vehicle control system to adapt flexibly to different conditions of
EM operation without explicitly being applicated for it.

5 CONCLUSION

As a result of the FVV research project, a fully modular architec-
ture has been developed based on object-oriented design princi-
ples. It has been demonstrated that existing component models
and controllers can be defined as objects with attributes and
methods, and design by contract principles are applicable for
communication. A structured division into kinematic and dynamic
levels is necessary for decoupling, as well as the introduction of

FIGURE 4 Object-oriented architecture of the hybrid powertrain (© TUD)

MTZ worldwide  10|2023    57

new coordinator objects. The coordinators play a crucial role as
they form the central interfaces within their respective levels. Addi-
tional objects, such as the “energy manager “, can provide torque
recommendations as advisory objects, but they should never
directly control the actuators. The architecture has been transferred

to a simulation environment and validated using selected applica-
tion examples. It has been shown that vehicle configurations can
be created and functionally implemented by scaling individual
objects. Furthermore, new technologies can be integrated into the
objects without requiring modifications to the entire system.

REFERENCES
[1]	 Martin, R. C.: Pearson new international edition. Agile software develop-
ment, principles, patterns, and practices (1st ed.). Harlow: Pearson Education
Limited, 2014
[2]	Held, V.; Heitmann, A.: Modularization of vehicle control systems based on
the application of object-oriented design principles. 8th International Munich
Chassis Symposium 2017, chassis.tech plus, Munich, 2017
[3]	Booch, G. et al.: Object-oriented analysis and design with applications
(3rd ed.). Upper Saddle River, N.J.: Addison-Wesley, 2007

FIGURE 6 Torque split with EM operating with overload capacity (© TUD)

FIGURE 5 Simulation setup of the OOD for three vehicle variants (© TUD)

THANKS
The research project (FVV project no. 1428) was performed by the Institute for

Internal Combustion Engines and Powertrain Systems (vkm) of TU Darmstadt

under the direction Univ.-Prof. Dr. techn. Christian Beidl. It was funded by the

FVV e. V. The project was conducted by an expert group led by Dr. Veit Held

(formerly Stellantis/Opel Automobile) and Dr.-Ing. Thomas Opitz Held (formerly

Stellantis/Opel Automobile). The authors gratefully acknowledge the support

received from the from the FVV and from all those involved in the project.

ICE torque
100

50

0
0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18

Actual torque EM
Maximum limit EM/battery
Minimum limit EM/battery

100
0

-100

1
0.5
0

50

0

EM torque

Overload available

Vehicle speed

Time [s]

[k
m

/h
]

[-
]

[N
m

]
[N

m
]

RESEARCH  Functions Integration

58 www.springerprofessional.com/automotive

